...

Hi, I’m Nara

I am a computer engineer with professional experience in software engineering. In 2023, I transitioned to physics and am currently an M.Sc. candidate, conducting research focused on the analysis of data from heavy-ion collisions at the Large Hadron Collider (LHC).

More Information About Me

Education & Honors
  • ...
    University of São Paulo

    Physics Institute (IFUSP)

This section will gather my peer-reviewed publications and preprints as they become available, documenting my ongoing academic research and collaborations. It will be updated as results are published.

    Level:

    Coursework from my undergraduate and graduate studies, demonstrating my formal training in physics, mathematics, engineering, entrepreneurship, statistics, and machine learning. Each course links to lecture notes, references, and related materials. Courses marked with an asterisk (*) are planned or currently in progress.

    DPG5011 Formação do Cientista Empreendedor EAP5054 Formação do Cientista Empreendedor II FCM0101 Física I FCM0102 Física II FFI0180 Laboratório de Física Geral I FFI0181 Laboratório de Física Geral II IF4300214 Física Experimental IV IF4302111 Física I IF4302112 Física II IF4302112 Física Matemática I IF4302211 Física III IF4302212 Física IV IF4302305 Mecânica Clássica I IF4302306 Mecânica Clássica II IF4302307 Física Matemática II IF4302403 Mecânica Quântica I IF4302404 Mecânica Quântica II MAC5722 Complexidade Computacional MAC5921 Deep Learning MAE5911 Fundamentos de Estatística e Machine Learning MAT5730 Álgebra Linear MCKZ Métodos Quantitativos PGF5001 Mecânica Quântica I PGF5002 Mecânica Quântica II * PGF5003 Eletrodinâmica PGF5005 Mecânica Clássica PGF5006 Mecânica Estatística PGF5107 Introdução à Teoria Quântica de Campos I * PGF5261 Teoria de Grupos Aplicada a Sólidos e Moléculas PGF5295 Teoria de Muitos Corpos e Matéria Condensada * SAP0679 Humanidades e Ciências Sociais SCC0635 Visão Computacional em Robótica SCC0650 Computação Gráfica SCC0661 Hipermídia e Multimídia SCE0245 Algoritmos Avançados SCE0294 Laboratório de Algoritmos Avançados SCE0601 Introdução à Ciência da Computação I SCE0601 Laboratório de Introdução à Ciência da Computação I SCE0602 Introdução à Ciência da Computação II SCE0603 Algoritmos e Estrutura de Dados I SCE0605 Teoria da Computação e Compiladores SCE0606 Algoritmos e Estrutura de Dados II SCE0607 Organização de Computadores Digitais I SCE0609 Sistemas Operacionais I SCE0610 Programação Orientada a Objetos SCE0611 Engenharia de Software SCE0613 Arquitetura de Computadores SCE0614 Inteligência Artificial SCE0615 Banco de Dados SCE0616 Sistemas Computacionais Distribuídos SCE0617 Redes de Computadores SCE0620 Análise e Projeto Orientado a Objetos SEL0344 Antenas SEL0366 Comunicações Ópticas SEL0601 Materiais Elétricos SEL0602 Circuitos Elétricos SEL0604 Sinais e Sistemas SEL0606 Laboratório de Sistemas Digitais SEL0607 Fundamentos de Semicondutores SEL0608 Eletromagnetismo SEL0609 Circuitos Eletrônicos I SEL0610 Laboratório de Circuitos Eletrônicos SEL0611 Fundamentos de Controle SEL0612 Ondas Eletromagnéticas SEL0614 Microprocessadores e Aplicações SEL0615 Circuitos Eletrônicos II SEL0615 Processamento Digital de Sinais SEL0616 Princípios de Comunicação SEL0617 Fundamentos de Microeletrônica SEL0618 Projeto de Circuitos Integrados Analógicos SEL0618 Projeto de Circuitos Integrados Digitais I SEL0619 Comunicação Digital SEL0620 Controle Digital SEL0622 Projeto de Circuitos Integrados Digitais II SEP0527 Gestão e Organização SEP0587 Princípios de Economia SET0623 Mecânica dos Sólidos SHS0416 Sistema de Gestão Ambiental SHS0619 Fenômenos de Transporte SMA0111 Funções de Variáveis Complexas SMA0182 Álgebra Linear e Equações Diferenciais SMA0300 Geometria Analítica SMA0301 Cálculo I SMA0332 Cálculo II SMA0333 Cálculo III SME0320 Estatística I SME0600 Cálculo Numérico I SME0601 Cálculo Numérico II SME0610 Programação Matemática SQM0405 Química Geral Experimental SSC0144 Redes de Alto Desempenho SSC0570 Empreendedores em Informática SSC0643 Avaliação de Desempenho SSC0748 Redes Móveis

    Invited and contributed talks presented at seminars, conferences, and academic meetings.

    IA e Meta Mundo
    IA e Meta Mundo

    Rio Innovation Week

    13/08/2024

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

    TDC Business
    TDC Business

    The Developer Conference

    24/08/2022

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

    Tech Day
    Tech Day

    Open Co

    08/12/2022

    Follow-up talk at Open Co Tech Day presenting the practical implementation of a quantum search algorithm, building on previous discussions of quantum computing fundamentals, and including a time computational complexity analysis.

    Tech Day
    Tech Day

    Open Co

    05/12/2021

    Invited talk at Open Co Tech Day introducing quantum computing concepts, recent developments, and practical entry points for industry engagement.

    This section presents the academic research projects I have developed to date. These projects were carried out within an academic context, combining theoretical analysis, computational methods, and practical experimentation.

    ...
    Heavy Ion Collision
    JETSCAPE (present)

    This project aims to investigate relativistic heavy-ion collisions at the Large Hadron Collider using a model–to-data comparison approach. The work focuses on training statistical emulators to reproduce the output of computationally intensive theoretical models, avoiding the need to run full dynamical simulations. These emulators are then used to study correlations between experimental observables and physical parameters—such as shear and bulk viscosity, rapidity, transverse momentum spectra, among others—allowing an assessment of how different observables constrain the underlying collision dynamics.

    C++ Python TRENTo MUSIC Quantum observable correlations Large Hadron Collider (LHC) Heavy-ion collisions Gaussian Processes
    ...
    Quantum Material Simulation
    SAMPA USP (2023 - 2025)

    My research evolved through quantum simulations of molecular systems. I modeled electronic Hamiltonians within the Born–Oppenheimer approximation and expressed these Hamiltonians through second quantization, mapping them to qubit representations using the Jordan–Wigner transformation. I performed variational ground-state energy estimations in hybrid quantum–classical architectures, implementing the UCCSD ansatz with Qiskit Nature and conducting comparative experiments with PennyLane on simple molecular systems. Building on this variational framework, I explored neural-network quantum states—specifically restricted Boltzmann machines (RBMs)—as expressive ansätze for representing molecular ground states.

    Quiskit Nature Pennylane Born–Oppenheimer approximation Fermionic Hamiltonians Jordan–Wigner transformation UCCSD ansatz Restricted Boltzmann Machine ansatz Variational Methods Ground state energy
    ...
    Quantum Computing
    SAMPA USP (2023 - 2025)

    In this work, I studied quantum information encoding mechanisms, the construction of gate-based quantum circuits, and their implementation using Google Cirq, Amazon Braket, IBM Qiskit and CERN Qibo SDKs. I analyzed the execution of quantum operations and algorithms across different quantum hardware platforms—such as superconducting, trapped-ion, photonic, and neutral-atom systems—examining execution time, noise, and decoherence parameters. I implemented algorithms such as the Deutsch algorithm and Grover’s quantum search, and carried out introductory studies in quantum machine learning using quantum support vector machines (QSVM). To address noise in NISQ devices, I explored quantum error mitigation techniques, including zero-noise extrapolation (ZNE) and Clifford-based regression methods.

    Python AWS Braket IBM Qiskit Google Cirq CERN Qibo Grover's Search Algorithm Deutsch's Algorithm Quantum Support Vector Machines (QSVM) Quantum gates Neural Atom Superconducting Photonic Ions Trapped Clifford Data Regression (CDR) Zero-Noise Extrapolation (ZNE)